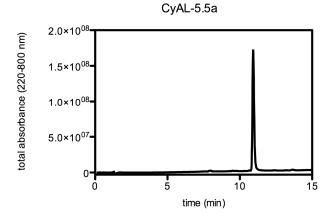

Supplementary materials for:


Facile Synthesis of Monofunctional Pentamethine Carbocyanine Fluorophores

Fangwei Shao¹, Hushan Yuan², Lee Josephson², Ralph Weissleder¹, and Scott A. Hilderbrand^{1*}

¹Center for Systems Biology, Harvard Medical School/Massachusetts General Hospital 149 13th Street, Charlestown, MA 02129 Tel: 1-617-643-5679; Email address: Scott_Hilderbrand@hms.harvard.edu

² Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Harvard Medical School/Maphusetts General Hospital

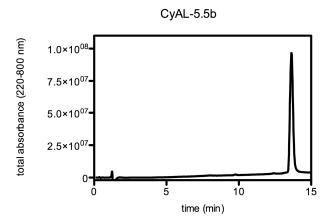
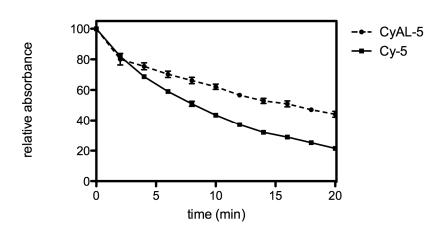



Figure S1. HPLC purity traces of CyAL-5 (top), CyAL-5.5_a (middle), and CyAL-5.5_b (bottom). The dyes were eluted using a gradient of 0-100% buffer B over 15 min and a flow rate of 0.3 mL/min. Buffer A is water with 0.1% trifluoroacetic acid, buffer B is acetonitrile with 10% water and 0.1% trifluoroacetic acid.

Photostability Studies.

The relative photostabilities of the new symmetric carboxylic acid modified fluorophores were assessed by comparison to analogous fluorophores: Cy-5 was used as a standard for CyAL-5 and Cy-5.5 was used as a standard for CyAL-5.5_a and CyAL-5.5_b. Solutions of fluorophores (1-2 uM) in PBS (for Cy-5 and CyAL-5) or PBS with 10% DMSO (for Cy-5.5, CyAL-5.5_a, and CyAL-5.5_b) were irridiated with a 600 W high power sodium lamp and the photodecomposition was measured at 2 min intervals by UV/vis spectroscopy.

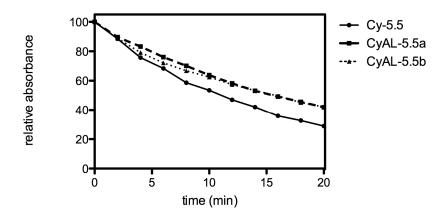


Figure S2. Traces (at the abs_{max} for each fluorophore) showing fluorophore photostability. Photostabilities of Cy-5 (solid line) and CyAL-5 (dashed line); top graph, and Cy-5.5 (solid line), CyAL-5.5_a (dashed line), and CyAL-5.5_b (dotted line); bottom graph, are shown. All data sets were performed in triplicate with error bars showing the standard deviation. All three dyes (CyAL-5, CyAL-5.5_a, and CyAL-5.5_b) show improved photostability in comparison to the standards.